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ARTICLEINFO ABSTRACT

Keywords: Facility location problems have often vagueness and uncertain
Facility location properties. In P-center problems, this uncertainty can be in the
Vertex P-center problem parameters of demand nods. Firstly, in this paper, a vertex-center
Fuzzy random linear programming problem with uncertain demand nodes is considered in which the
Possibility demand nodes are fuzzy and fuzzy random variables. Then, new
Necessity solving methods are proposed based on possibility and necessity

measures, using fuzzy and fuzzy random programming,
respectively. Finally, a real case study in the city of Tabriz in Iran is
presented to clarify the methods discussed in this paper. The
computational results of the study indicate that these methods can be
implemented for center problem with uncertain framework.

1. Introduction

Facility location is an issue related to the planning stage of a factory or a service unit. Decision-
making regarding facility locations is a strategic matter. Constructing a new facility is usually
costly, and the impact of this decision will last for a long time. In the context of location,
facilities are placed in an environment that changes over time; consequently, in a cost location
model, demand, travel time, and other inputs related to the model can be highly uncertain. This
has led to the development of models for facility location under conditions of uncertainty being
a high priority(Bagherinejad & Shoeib, 2018; Cheng, Adulyasak, & Rousseau, 2021).
Location problems are typically classified based on the type of objective function,
parameters, solutions, etc. These problems vary in terms of objective functions, such as P-
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Center, P-median, and covering problems, among others. If the objective function is defined as
minimizing the maximum weighted distance between points and facilities, the problem is
classified as a P-center problem. If the facility locations is limited to the points of the network,
the problem is classified as a vertex P-center problem; however, if the facility can be placed
anywhere in the network, it becomes a free P-center problem (Contardo, lori, & Kramer, 2019;
Silva et al., 2021).

The P-center problem was first formulated as the vertex P-center problem. This problem
involves selecting P-centers from a limited set of nodes and assigning a set of clients to them,
with the goal of minimizing the maximum difference between a client and its associated center
(Nematian & Musavi, 2016).The vertex P-center model, which is presented with weighted
demand distances (Nematian & Sadati, 2015), serves as the foundational model used in this
study.

Considering that uncertainty in information can completely undermine the validity of an
optimal solution obtained, incorporating this uncertainty into achieving an optimal solution is
of great importance. (Taghavi and Shavandi 2012) employed certain non-deterministic
optimization methods to examine the P-center problem under demand uncertainty and
developed its non-deterministic model as an integer programming model, solving it using a tabu
search algorithm. (Duran-Mateluna et al. 2023) presented a robust integer programming model
for the weighted vertex P-center problem in such a way that the weights of the nodes and the
lengths of the edges were uncertain.

Another method for considering parameter uncertainty is the use of fuzzy logic and
possibility theory. In this approach, inaccuracies and uncertainties in the model can be
incorporated using the opinions of experts and decision-makers in modeling the problem. In
this approach, we aim to provide a new modeling framework for the P-center problem under
fuzzy uncertainty using possibility theory. This employs integer programming with fuzzy
parameters, and through the fuzzy CCP approach based on possibility theory, the resulting
models will be transformed into deterministic forms. To achieve this, the approach presented
by (Nematian 2015a) will be utilized.

Additionally, considering that in real-world problems, parameter values possess not only
fuzzy properties but also random properties, it is necessary for experts and decision-makers to
make decisions based on information that has both fuzzy ambiguity and probabilistic
uncertainty. For this purpose, integer programming models with Fuzzy Random Linear
Programming (FRLP) are utilized. This is a Fuzzy Random Linear Programming (FRLP) where
the parameters are random fuzzy variables, while the decision variables are real numbers
(Nematian, 2015b; Wang, Feng, and Fei, 2024). Subsequently, efforts will be made to transform
the obtained models, using the principle of fuzzy extension and the presented possibility theory,
into deterministic linear programming problems. The general method for solving the problem
is derived from a technique proposed by (Nematian, 2015a; Nematian, 2015b).

This paper is composed of the following sections: Section 2 addresses the modeling and
solving of the P-center problem under uncertainty using fuzzy linear programming and random
fuzzy linear programming. Section 3 examines a case study of family park location within the
city of Tabriz to assess the effectiveness of the methods presented in this paper. Finally, Section
4 includes the final conclusion and discussion for future research.

2. Parameters and Variables of the Model

The parameters and variables of the above model are defined as follows:
 dijj: The shortest path length between demand node i and candidate facility node j.

e Wi: Represents the demand at each node i.
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p: The number of facilities to be located.

Xi: A binary variable indicating if a facility is located at node j.

Xij: A binary variable indicating the assignment of node i to the facility located at node j.

o T: The maximum distance between a demand node and the nearest facility.

2.1. Modeling the P-Center Problem under Fuzzy Uncertainty

In this study, the foundational model of the vertex P-center problem with weighted distances
under fuzzy uncertainty is examined as follows (Nematian & Musavi, 2016):

Model: 1

Min T L)
Zwl gy T Vi @)
Z 3)

_U X, <0 Vi, j )
Z X, = vi (5)
Xl] € {0,1} Vi, j (6)
X; € {01} Vi )

In explaining the above model, it can be stated that the objective function, along with
constraint (1), is aimed at minimizing the maximum weighted distance, which is the essence of
the P-center problem. This primary objective function can be expressed as follows:

Min{MaxiZdinij} (8)
j=1
Constraint (2) ensures that all demands can only be satisfied if the facilities are located at the
designated nodes i. Constraint (3) states that demand at node i can only be assigned to a facility
that has been established at node j. Constraint (4) indicates that the demand of each node must
be met by a facility that has been previously established.

2.2. Fuzzy Linear Programming (FLP)

Fuzzy linear programming (FLP), wiis considered in the form of triangular fuzzy numbers.
Therefore, we have:

Model 2
Min Z 9)
n
> wiXydy <2 vi (10)

C_onstraints 3-7 from Model 1
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2.3. Model Based on Possibility Criteria in Fuzzy Linear Programming
If the permissible level of possibility (CCP) is considered, Model 2 is approached with the
parameter #:

Min Z (11)

n
H(Z WXydy <Z) 21 vi (12)
=1

]_
Constraints 3-7 from Model 1

Theorem 1
If the deC|S|on vector is non- negatlve we will have the following relation:

H(Z wiXjjdij<Z)=zte Ewl d;j L(T)ZBLX idij <Z (13)

To prove the theorems, you can refer to Nematian (2015a, 2015b) where
L*(4)=sup{tIL(t)>1}, with L representing the inverse function of L* in the above relation.
Based on the result obtained from the theorem 1, model 3 is as follows:

Model 3

This model is formulated as a deterministic linear programming model and can be easily
solved using linear programming software.

2.4. Model Based on Necessity Criteria in Fuzzy Linear Programming

Since the solution obtained from the model based on possibility criteria is quite optimistic, this
model is not suitable for pessimistic decision-makers who intend to avoid risk. Therefore,
another type of model is developed, referred to as the model based on necessity criteria, which
is appropriate for pessimistic individuals and those who are risk-averse.

Model 4
Min Z
(21)
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n
j=1

Theorem 2: If the decision vector x is non-negative, relation (22) changes as follows:

n n n
N ZWLXUdU <Z ZTHZWLXUCZU—L*(l—T)ZﬁlXUdU <Z (23)
]:1 ]=1 ]:1

Therefore, model 5 changes as follows:

Model 5

2.5. Fuzzy Random Variable (FRV) Programming

Considering that the uncertainty in the parameter wi has both fuzzy and random properties, it
seems appropriate to present a model based on random fuzzy linear programming for this
problem. This model is built on the concept of Fuzzy Random Variables (FRV), where an FRV
is a random variable whose actual value is a fuzzy number. Therefore, this concept encompasses
both aspects of possibility and probability, simultaneously incorporating fuzzy and random
properties.

The FRLP model for the vertex P-center problem with uncertain weighted distances and
coefficients of fuzzy random variables is presented as follows:
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Model 6:

2.6. Model Based on Possibility Criteria in Fuzzy Random Variable Programming

In order to control fuzzy random variables, the programming model of the problem is defined
as follows, using possibility theory:

Model 7

In the above model, n is the permissible possibility level, and & is the permissible
probability level.

Theorem 3: If the decision vector x is non-negative, the following two relations are
equivalent:

[m|]'[( _11“13' w)x; dUEZ)E?} ]EEH:} 40)

n i
T (E) Z W?Jdﬂxﬁ + Z 1“"?}} I‘iuxu L*(ﬂ} . 1ﬂ|' d,-jx!-j = Z,
1= =

=1
It is defined as T*(2)=inf{t|T(t)>A}, and T+ is the inverse function of T. Based on the relation
obtained in Theorem 3, Model 7 is transformed as follows:
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Model 8

2.7. Model Based on Necessity Criteria in Fuzzy Random Variable Programming

With FRLP variables for the vertex P-center problem with weighted distances in the -P state,
this model, as previously mentioned, pertains to pessimistic individuals and is presented for the
fuzzy random problem as follows:

Model 9
min Z @)
Theorem 4: If the decision vector x is non-negative, we will have:
Pr{a|N( Xy W (@)r,d,; < 2) 27 J26 e
(49)

n n n
- (2) (0) _
T*(H}Z W; d[-;IE-j +Z W; d['jl'!'}' _L*(j. _H)Z IB[' duxu =2Z.
J=1 =1 j1
And the final model based on necessity criteria is presented as follows:

Model 10

3. Case Study in the City of Tabriz

In this section, a case study has been conducted in the city of Tabriz regarding the location and
allocation of family parks. The objective is to locate family parks in such a way that the
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maximum weighted distance in the network is minimized. Therefore, the problem is of type -
P. To conduct the study, the map of Tabriz city and candidate points for locating family parks
are shown in Table 1.

Table 1
Names and Numbers of Regions
sggr:gn Number  Region Name Number  Region Name Number
Farhang 1 Khayyam 5 Koye 9
Enghelab

Bahar Street 2 17th Shahrivar 6 Zaferaniyeh 10
Sheshgolan 3 Ashrafi Laleh 7 Vali Asr 11
Abbasi 4 University 8 Basmanj Road 12

Square

The names of the regions and their corresponding numbers considered in this study are
recorded in Table 1. In this study, the number of parks to be located in the city is set to 3. For
this purpose, after conducting necessary investigations, 12 areas of the city have been identified
as candidate points, which are illustrated in Figure 1. The distances between them have been
selected using Google Maps for analysis. Finally, from these 12 areas, parks will be established
in 3 areas selected based on the problem-solving results.

Figure 1
Map of Tabriz City Along with Candidate Points for Location

Table 2
Distance Matrix
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» J 1 2 3 4 5 6 7 8 9 10 11 12
i

! - 51 93 151 57 6.9 4.7 102 9 134 145 161
2 - - 57 124 3 47 46 79 69 123 103 136
3 - - - 44 88 79 111 59 87 92 76 107

- - - -9 6 11.8 51 7.8 6.7 47 5.8
- 23 22 6.1 56 82 95 116

6 - - - - - - 4.4 44 27 64 8 7.6
7 - - - - - - - 78 48 99 112 118
8 _ - - - - - - - 5 49 56 6.3
9 _ - - - - - - - - 66 7.9 7.4
10 - - - - - - - - - - 4 6.3
11 - - - - - - - - - - - 35

Table 3 shows all the demand region elements as fuzzy random variable for the use of
family parks.

Table 3
Demand for points for the use of family park

Number of Regions quj w?] szj Bi Yi
1 400 450 9 30 60
2 150 200 3 10 10
3 400 450 4 15 20
4 300 350 4 40 30
5 500 550 8 50 30
6 450 500 10 40 30
7 200 250 4 2 10
] 600 650 B 50 40
9 250 300 6 L5 30
10 350 400 6 30 50
11 500 550 5 50 60
12 100 150 7 2 20

3.1. Results from the Case Study

To determine the suitable locations of family parks, the models for P-center problem in both
fuzzy and fuzzy random states using the GAMS software were employed. The modeling
conducted for the problem has coded feasibility and necessity criteria for both states based on
the parameters discussed. The obtained values for the objective function were recorded for
further analysis and are presented in Tables 4, 5, and 6.

3.1.1. Determining the Optimal Point in the Model Based on Feasibility Criteria

To determine an optimal point in the fuzzy state, where the goal is to achieve the maximum
level of feasibility, the optimal point » = 0. 9 is selected at an objective function of 2271.450.

In the fuzzy random state, if the optimal solution is defined as the minimum value and no
other strategy is considered, the objective function values are compared in Table 5. From the
comparison, the lowest value present in the table, which represents the objective function at the



10 J. Nematian et al

optimal point, is obtained. This value, specified in Table 5, is determined as = 0. 1 and the
probability level 8 = 0. 3 equals 2126.28, which is at the level of feasibility.

It is noteworthy that in the fuzzy state, only the conditions of ambiguity using the level of
possibility influence the determination of the optimal point. However, in the fuzzy random state,
both ambiguity and the randomness of events enter the decision-making process, using levels
of possibility and probability.

Table 4
The values for Objective Function at the Fuzzy State

The model based on The model based on
n the necessity criteria possibility criteria
0.1 2138.500 2271.450
0z 2162.000 2262900
03 2185.500 2254350
0.4 2209.000 2245300
0.5 2232.500 2232.500
0.6 2245 800 2209.000
0.7 2254 350 2185500
0.8 2262.900 2162.000
9 2271450 2138.500
Table 5

The Values for Objective Criteria in the Model Based on the Possibility Criteria-Fuzzy
Random State

n 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9
0
0.1 2173.866 2182416 215542 217892 220242 2216616 2225166 2233716 2242266
0.2 2183.808 2102.448 2200998 2209.548 221276 2226.648 2235108 2243748 2252208
0.3 212628 214978 2208204 2216844 2225304 2233044 2242404 2251.044 2250504
0.4 2132625 2156.125 2179.625 2223 2226625 22401 224865 22572 226575
0.5 21385 2162 21855 2200 20325 22458 225435 226290 227145
0.6 2144375 2167.875 2191375 2214.875 2238375 2261875 2285375 2308.875 2332375
0.7 2150.72 217422 219772 222122 224472 2257656 229172 231522  2338.72
0.8 215824 218174 220524 222874 225224 2264052 2273502 2282052 234624
0.9 2168.58 219208 221558 2239.08 2262.58 2274984 2283534 2202084 2300.634
Table 6

The Values for Objective Criteria in the Model Based on the Necessity Criteria-Fuzzy
Random State
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\ n 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09

v}

0.1 2242266 2233716 2225166 2216616 220242 217892 215542 2182416 2173.866
0.2 2252208 2243748 2235198 2226648 221276 2209548 2200998 2192448 2183.808
0.3 2250504 2251.044 2242494 2233044 2225394 2216844 2208204 214978  2126.28
04 226575 22572 2248.65 22401 2226625 2273 2179.625 2156125 2132625
05 227145 22629 225435 22458 22325 2200 21855 2162 21385
0.6 2332375 2308875 2285375 2261.875 2238375 2214875 2191375 2167875 2144375
07 233872 231522 2201.72 2257656 2244712 222122 219772 217422 2150.72
0.8 234624 2282052 2273502 2264952 225224 222874 220524 218174 215824
09 2300634 2292084 2283534 2274084 226258 223008 221558 219208 216858

To determine the change process of objective function, with different values for possibility
and probability levels, as well as the intuitive identification of the optimal point, 3D diagrams
can be used. Two examples of such diagrams are presented as follows for further consideration.

Figure 2

3D Diagram for Objective Function Values in the Model, Based on the Possibility Criteria-
Fuzzy Random State

Figure 3

The Change Processes for Objective Function for a Specific n, Based on the Possibility
Criteria-Fuzzy Random State.
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In Figure 3, the optimal point is indicated by an ellipse. It can also be observed graphically
that the optimal point occurs at #=0.1 and §=0.3. For the case of #=0.1 and 6=0.3, family parks
are located at points 4, 7, and, 8. Consequently, the demand from other points is also met
according to the allocation made, minimizing the maximum weighted distance in the network.

In determining the optimal point, there can be several scenarios and strategies. In this
section, four scenarios are defined, and the results obtained are presented:

e 17=0.9, =0.1, Objective function value = 2242.26

n=0.1, 6=0.9, Objective function value = 2168.58

o 17=0.5, =0.1, Objective function value = 2202.42

o 7=0.1, #=0.5, Objective function value = 2138.50

1. Achieving the maximum level of possibility and the minimum objective function value.
2. Achieving the maximum level of probability and the minimum objective function value.
3. Achieving the average level of possibility and the minimum objective function value.

4. Achieving the average level of probability and the minimum objective function value.

3.1.2. Determining the Optimal Point in the Model Based on the Requirement Criterion

To determine the optimal point in the fuzzy case, if the objective is to achieve the maximum
level of possibility, using Table 4, the optimal point is selected at #=0.9, with an objective
function value of 2138.500. In the case of random fuzziness, if only the minimum solution is
considered optimal, the objective function values in Table 6 are compared, and the optimal
value is determined to be 2126.28, which is achieved at the level of possibility #=0.9 and the
level of probability 6=0.3. This value is indicated in Table 6. This optimal point is the same as
the point obtained in the model based on possibility. The similarity of this point is due to the
specific shape of constraint (1) in both models.

Figure 4

The Change Processes for Objective Function for a Specific n, Based on the Necessity
Criteria-Fuzzy Random State



A Fuzzy Programming Approach for solving a p-Center Problem under Uncertainty Nematian 13

Figure 5

3D Diagram for Objective Function Values in the Model, Based on the Necessity Criteria-
Fuzzy Random State

The scenarios presented in section 3-1-1 can also be examined in this section, resulting in
the following:
1. #=0.9, 6=0.3, Objective function value = 2126.28

2. n=0.9, =0.9, Objective function value = 2168.58
3. n=0.5, 6#=0.1, Objective function value = 2202.42

4. n=0.9, 6=0.5, Objective function value = 2138.50

4. Conclusion

In this article, a method of fuzzy random linear programming with fuzzy random variables was
proposed for the P-center problem. Initially, the FLP model was formulated and transformed
into an LP model using possibility and necessity values. The FLP model was used to derive the
FRLP relationship, and finally, the FRLP model was also modeled based on the theory of
possibility and necessity for optimistic and pessimistic decision-makers. In this article, four
theorems were presented to convert the obtained models into deterministic linear programming
models. In the final stage, a case study was conducted in the city of Tabriz to evaluate the
usefulness of the proposed model. This study showed that with the fuzzy model, it is possible
to approach reality and incorporate the levels of possibility and probability of decision-makers,
as well as their optimism and pessimism, into the model and the determination of an optimal
point. Since uncertainty is an inseparable part of the problem and each parameter requires the
application of this uncertainty, it is suggested that fuzzy modeling be applied to facility location
problems, including covering problems, P-median problems, etc., so that the results obtained
from solving them are closer to real-world results.
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