وحید متقی

وحید متقی

مطالب
ترتیب بر اساس: جدیدترینپربازدیدترین

فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

ارائه رویکرد ترکیبی مبتنی بر یادگیری عمیق و یادگیری ماشین جهت تشخیص اخبار جعلی: مطالعه موردی اخبار فارسی در حوزه کرونا ویروس(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پردازش زبان طبیعی طبقه بندی متن شبکه های عصبی کپسول تشخیص اخبار جعل کرونا ویروس یادگیری عمیق یادگیری ماشین اخبار فارسی

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۲
هدف: اطلاعات غلط یا تأیید نشده، دقیقاً مانند اطلاعات دقیق در وب منتشر می شوند. بنابراین، ممکن است ویروسی شوند و بر افکار عمومی و تصمیمات آن تأثیر بگذارند. اخبار جعلی و شایعات به ترتیب محبوب ترین اشکال اطلاعات دروغ و تأیید نشده را نشان می دهند و برای جلوگیری از تأثیرات چشمگیر آنها باید در اسرع وقت کشف شوند. علاقه به تکنیک های مؤثر در شناسایی، در سال های اخیر بسیار سریع در حال افزایش است. مسئله تشخیص اخبار جعلی به عنوان یک مسئله طبقه بندی در پردازش زبان طبیعی و متن کاوی شناخته می شود و هدف آن تفکیک و تشخیص اخبار جعل از واقعی، در متن های استخراج شده و بهبود در دقت تشخیص اخبار جعلی است. شبکه های عصبی کانولوشن به عنوان یکی از مهم ترین مدل های یادگیری عمیق دقت بالایی را بر روی این مسائل بدست آورده اند. این شبکه ها شامل مشکلاتی مثل عدم در نظر گرفتن موقعیت کلمات می باشند که مسأله مذکور با استفاده از شبکه کپسول برطرف گردیده و جهت حل مشکل پردازش سنگین لایه های تمام متصل و فضای پارامتریک الگوریتم های XGBOOST و بهینه سازی ازدحام انبوه ذرات (PSO) برای دستیابی به دقت و صحّت بهینه پیشنهاد شده است. روش : مطالعه حاضر پژوهشی کاربردی بوده که در آن حدود 42000 اخبار فارسی از شهرهای مختلف ایران از توییتر جمع آوری شده و با استفاده از روش های پاک سازی و پیش پردازش، اطلاعات اضافی حذف و پس از برچسب زدن، اخبار آماده به کارگیری جهت رویکرد پیشنهادی با استفاده از نرم افزار پایتون و کتابخانه های مربوطه با الگوریتم های یادگیری ماشین و یادگیری عمیق شد. یافته ها: طی بررسی، آزمایش و تست، برخی از الگوریتم های یادگیری ماشین دارای قدرت بیشتری در مسائل طبقه بندی بودند، ولی با تغییرات و اعمال روش های پیشنهادی که در ساختار الگوریتم شبکه کانولوشن و شبکه کپسول صورت گرفت، نتایج بهینه نسبت به الگوریتم های یادگیری ماشین و سایر الگوریتم های پایه و الگوریتم های مورد ارزیابی بدست آمد. نتیجه گیری: راهکارهای پیشنهادی در این تحقیق در مقایسه با رویکردهای الگوریتم های پایه و یا راهکارهای صورت گرفته جهت حل مشکلات مذکور بدون اضافه کردن سربار اضافی از لحاظ تعداد ویژگی ها و عمق شبکه، با تغییر در ورودی توانسته است به نتایج بهتر و قابل قبول از سایر رویکردهای موجود در ادبیات دست یافته و به دقت و صحّت حدود 96 درصد دست یابد.  
۲.

ارائه رویکرد تنسور سه بعدی برای طبقه بندی و تشخیص اخبار جعلی: مطالعه موردی اخبار فارسی در حوزه کرونا ویروس(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پردازش زبان طبیعی طبقه بندی متن شبکه های عصبی کانولوشنی تنسور سه بعدی اخبار جعلی اخبار فارسی کرونا ویروس

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۲
هدف: هدف پژوهش حاضر اختصاص یکی از کلاس های جعل و واقعی به متن های آزاد می باشد. شبکه های عصبی کانولوشنی به عنوان یکی از مهم ترین مدل های یادگیری عمیق، دقت بالایی را بر روی این مسائل بدست آورده است. در این تحقیق آنالیز متن در سطح جمله و بهبود عملکرد شبکه عصبی کانولوشنی جهت تشخیص اخبار جعلی مورد توجه بوده است. در اﯾﻦ ﺷﺒﮑﻪ ﻫﺎ ﮐﻠﻤﺎت ﺑﻪ ﺻﻮرت ﮐﯿﺴﻪ ای از ﮐﻠﻤﺎت ﺑﻪ ﻣﺪل داده ﻣﯽ ﺷﻮﻧﺪ ﮐﻪ ﻫﺮ ﮐﻠﻤﻪ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻓﻀﺎی ﺑﺮداری ﺑﻪ ﻣﺎﺗﺮﯾﺲ ﻫﺎی دو ﺑﻌﺪی ﺗﺒﺪﯾﻞ ﻣﯽ ﺷود. یکی از محدودیت های شبکه های کانولوشن این است که در سطح کلمه کار کرده و نمی تواند رابطه و فاصله بین جملات را در نظر بگیرد و آﻧﺎﻟﯿﺰ در ﺳﻄﺢ ﺟﻤﻠﻪ مشکل اساسی در این تحقیق می باشد. در این پژوهش یک مدل پایه ای مبتنی بر شبکه های کانولوشنی پیشنهاد شده که در آن اسناد به صورت تنسورهای سه بعدی به شبکه داده می شوند تا بتواند مشکل مذکور را مرتفع نماید. در نظر گرفتن تنسورهای سه بعدی امکان یادگیری موقعیت کلمات در جمله را برای مدل فراهم می آورد و به نتایج دقیق تری در تشخیص اخبار جعل دست می یابد. روش شناسی: پژوهش حاضر مطالعه ای کاربردی بوده که در آن حدود 42000 اخبار فارسی از شهرهای مختلف ایران از توییتر جمع آوری شده و با عمل پیش پردازش، داده های اضافی و غیر مفید حذف و پس از برچسب زدن متون پاک سازی شده، متن اخبار جهت رویکرد پیشنهادی با استفاده از نرم افزار پایتون پردازش شده اند. یافته ها: برخی از الگوریتم های یادگیری ماشین دارای قدرت بیشتری در مسائل طبقه بندی بودند، ولی با تغییراتی که در ساختار الگوریتم شبکه کانولوشن صورت گرفت، نتایج بهتری نسبت به الگوریتم های یادگیری ماشین و سایر الگوریتم های مشابه حاصل شد. نتیجه گیری: در نظر گرفتن تنسورهای سه بعدی امکان یادگیری موقعیت کلمات در جمله را برای مدل فراهم می آورد و این مدل پیشنهادی در مقایسه با رویکردهای پیشنهادی در ادبیات، دقت قابل توجهی را بدست آورده است. مدل پیشنهادی بدون اضافه کردن سربار اضافی از لحاظ تعداد ویژگی ها و عمق شبکه، با تغییر در ورودی توانسته است به نتایج بهتر و قابل قبول از سایر رویکردهای موجود در ادبیات دست یافته و به دقت و صحّت بیش از 94 درصد دست یابد.  

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان