سیمین حبیب زاده خیابان

سیمین حبیب زاده خیابان

مطالب
ترتیب بر اساس: جدیدترینپربازدیدترین

فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

AI-Driven credit risk assessment in Iranian banking

کلیدواژه‌ها: Artificial Intelligence credit risk assessment Iranian Banking hybrid decision-making algorithmic ethics Organizational Change

حوزه‌های تخصصی:
تعداد بازدید : ۲ تعداد دانلود : ۲
This study explores how AI is perceived and operationalized in credit risk assessment within Iranian banking institutions, with a particular focus on the experiences of electronic banking professionals in Tehran. Drawing on grounded theory methodology and semi-structured interviews with 38 practitioners from both public and private banks, the research reveals a complex landscape of technological promise and institutional constraint. Participants emphasized the efficiency, consistency, and expanded analytical reach afforded by AI models, particularly in leveraging alternative data and enhancing fraud detection. However, these benefits are tempered by operational challenges, including fragmented data systems, outdated IT infrastructure, and opaque algorithmic outputs. Ethical and regulatory concerns—especially surrounding algorithmic bias, accountability, and the absence of formal oversight—emerged as significant barriers to responsible deployment. Moreover, organizational resistance, hierarchical decision-making structures, and cultural skepticism toward automation further complicate adoption. The findings suggest strong practitioner support for hybrid decision-making models that integrate AI capabilities with human expertise. This model offers a viable pathway toward responsible innovation, balancing the computational advantages of AI with the contextual judgment and ethical sensitivity of human agents.
۲.

Artificial intelligence in credit risk assessment

کلیدواژه‌ها: credit risk assessment Artificial Intelligence Machine Learning Explainable AI model interpretability Financial Technology

حوزه‌های تخصصی:
تعداد بازدید : ۲ تعداد دانلود : ۲
This study presents a structured literature review on the application of AI in credit risk assessment, synthesizing empirical and conceptual research published between 2016 and 2022. It critically examines a range of AI models, including artificial neural networks (ANN), support vector machines (SVM), fuzzy logic systems, and hybrid architectures, with an emphasis on their predictive accuracy, robustness, and operational applicability. The review highlights that AI-based models consistently outperform traditional statistical techniques in handling nonlinear patterns, imbalanced datasets, and complex borrower profiles. Furthermore, AI enhances the inclusivity of credit evaluation by integrating alternative data sources and adapting to dynamic financial environments. However, the study also identifies ongoing challenges related to model interpretability, fairness, and regulatory compliance. By evaluating model performance metrics and methodological innovations across multiple contexts—including emerging markets, peer-to-peer platforms, and digital banking—the study offers a nuanced understanding of AI's strengths and limitations. The paper concludes with a call for balanced integration of explainable AI tools and ethical governance to ensure responsible deployment in financial institutions.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان